Turbine Steam Chest Life Assessment

نویسندگان

  • Daniel T. Peters
  • Eric Jones
  • Steven Greco
چکیده

The optimal approach to condition assessment, regardless of the component involved, is to use a programmatic approach, and steam chest condition assessment is no exception. Steam chests typically vary significantly from one to the next in shape and complexity; consequently, stress distributions vary and damage occurs first and is most advanced at the high stress regions, accordingly. One of the most significant cost drivers in an overall program is an ongoing implementation of NDE that has little technical justification, i.e., implementing NDE as the means of identifying the high stress locations via flaw detection. Keep in mind that flaws can manifest themselves at both macro and micro levels. Therefore, inspection typically includes surface inspection using liquid dye penetrant and/or magnetic particle inspection for macro damage and metallographic replication for micro damage, plus ultrasonic inspection for volumetric inspection of subsurface flaws and flaws at otherwise inaccessible surfaces. In a programmatic approach, the first step is to accurately understand the stresses of the steam chest to determine the appropriate areas requiring examination and monitoring. Then, only after identifying the critical areas on the steam chest, attention turns to defining the optimal techniques and procedures to examine the areas identified. By implementing a focused inspection that concentrates on the critical areas, as opposed to a shotgun approach, the scope, cost, and the frequency of the inspection is significantly reduced. The programmatic approach identifies these critical areas up front and helps to determine the best method for their inspection. The best method is most often dictated by access constraints and limitations at the region of interest. In recent years, significant strides have been made in the use of advanced UT techniques such as linear phased array (LPA) and annular phased array (APA) ultrasonic inspection for sizing cracks in some of the least accessible areas. In many cases, once identified, the damage can subsequently be monitored periodically with only the local removal of insulation. The disassembly of the valve is not required on an on-going basis, nor is full insulation removal in most cases. Finally, once damage has been identified and characterized, be it early form cavitation through to defined cracks, the model used initially to identify the inspection locations is then used to assess the damage in terms of growth rates and failure potential. This information is utilized for a complete Fitness for Service Assessment of the unit. This would include definition of re-inspection intervals, monitoring requirements, and possibly to assess repair/replace options and schedules. These assessments meet the requirements of current Standards in Fitness for Service Assessment. The robust life assessment program presented here includes: 1. upfront analysis of the steam chest to identify problem areas including modeling of the valve, 2. focused baseline inspection of identified potential problem areas, 3. Fitness for Service Analysis utilizing focused baseline inspection results, 4. continued monitoring of critical areas of the valve. This programmatic approach results in a focused, optimized integrity assessment program at minimized cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems

The cycles of the steam-injection gas-turbine systems are studied. The analyses of the parametric effects and the optimal operating conditions for the steam-injection gas-turbine (STIG) system and the regenerative steam-injection gas-turbine (RSTIG) system are investigated to ensure the maximum performance. Using the analytic model, the performance parameters of the system such as thermal effic...

متن کامل

NDE Inspections and Lifetime Assessment of Turbine Equipment

The growing demand for power is putting tremendous stress on existing power plants for generating electricity. The plants are being operated for longer periods of time under heavy load conditions. Reliability of key components of the power plant such as steam or gas turbines and generators is of prime importance. Many utilities are interested in extending the life of turbine-generator component...

متن کامل

Thermodynamic Assessment and Parametric Study of a Supercritical Thermal Power Plant

A thermodynamic analysis of an operational 315 MW supercritical steam power plant (SPP) using the actual data is performed to assess the plant performance and identify the sites of energy losses and exergy destructions in each component of the plant. Various performance parameters such as component energy and exergy efficiencies, energy loss rate, exergy destruction rate, improvement potential ...

متن کامل

Contact Pressure Validation of Steam Turbine Casing for Static Loading Condition

Steam Turbines are devices used to convert thermal energy of steam into mechanical energy, which may be used to produce Electrical Energy. Steam turbine generator units are being used extensively all over the world for generation of electric power and for co-generation of steam and power. Contact pressure and pretension in bolts-analysis has been made easier in recent years due to the availabil...

متن کامل

Silicone-polyether Copolymers as New Steam Turbine Oil Demulsifiers

Turbine oil plays an important role in supporting optimal steam turbine performance. Some additives in turbine oil can cause emulsification when the oil is contaminated by water, so demulsibility is a very important property of the steam turbine oil. In order to improve the demulsibility of steam turbine oil, two kinds of polyether-silicone comb copolymers are synthesized and used as steam turb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011